Favicon
Favicon

Vaccine-induced antibodies may be less effective against several new SARS-CoV-2 variants

Date: March 12, 2021 By:

by: Rachel Leeson. Image courtesy of: iSO-FORM LLC

 

 

Researchers at the Ragon Institute of Mass General, MIT, and Harvard and at Massachusetts General Hospital find that neutralizing antibodies raised by COVID-19 vaccines are not as effective at neutralizing some new, circulating SARS-CoV-2 variants.


SARS-CoV-2, the virus that causes COVID-19, has mutated throughout the pandemic. New variants of the virus have arisen throughout the world, including variants that might possess increased ability to spread or evade the immune system. Such variants have been identified in California, Denmark, the U.K., South Africa and Brazil/Japan. Understanding how well the COVID-19 vaccines work against these variants is vital in the efforts to stop the global pandemic, and is the subject of new research from the Ragon Institute of Mass General, MIT, and Harvard and Massachusetts General Hospital.

 

In a study recently published in Cell, Ragon Core Member Alejandro Balazs, PhD, found that the neutralizing antibodies induced by the Pfizer and Moderna COVID-19 vaccines were significantly less effective against the variants first described in Brazil/Japan and South Africa. Balazs’s team used their experience measuring HIV neutralizing antibodies to create similar assays for COVID-19, comparing how well the antibodies worked against the original strain versus the new variants.  

 

“We were able to leverage the unique high-throughput capacity that was already in place and apply it to SARS-CoV-2,” says Balazs, who is also an assistant professor of Medicine at Harvard Medical School and assistant investigator in the Department of Medicine at MGH. “When we tested these new strains against vaccine-induced neutralizing antibodies, we found that the three new strains first described in South Africa were 20-40 times more resistant to neutralization, and the two strains first described in Brazil and Japan were five to seven times more resistant, compared to the original SARS-CoV-2 virus.”  

 

Neutralizing antibodies, explains Balazs, work by binding tightly to the virus and blocking it from entering cells, thus preventing infection. Like a key in a lock, this binding only happens when the antibody’s shape and the virus’s shape are perfectly matched to each other. If the shape of the virus changes where the antibody attaches to it – in this case, in SARS-CoV-2’s spike protein – then the antibody may no longer be able to recognize and neutralize the virus as well. The virus would then be described as resistant to neutralization. 

 

“In particular,” says Wilfredo Garcia-Beltran, MD, PhD, a resident physician in the Department of Pathology at MGH and first author of the study, “we found that mutations in a specific part of the spike protein called the receptor binding domain were more likely to help the virus resist the neutralizing antibodies.” The three South African variants, which were the most resistant, all shared three mutations in the receptor binding domain. This may contribute to their high resistance to neutralizing antibodies. 

 

Currently, all approved COVID-19 vaccines work by teaching the body to produce an immune response, including antibodies, against the SARS-CoV-2 spike protein. While the ability of these variants to resist neutralizing antibodies is concerning, it doesn’t mean the vaccines won’t be effective.

 

“The body has other methods of immune protection besides antibodies,” says Balazs. “Our findings don’t necessarily mean that vaccines won’t prevent COVID, only that the antibody portion of the immune response may have trouble recognizing some of these new variants.”

 

Like all viruses, SARS-CoV-2 is expected to continue to mutate as it spreads. Understanding which mutations are most likely to allow the virus to evade vaccine-derived immunity can help researchers develop next-generation vaccines that can provide protection against new variants. It can also help researchers develop more effective preventative methods, such as broadly protective vaccines that work against a wide variety of variants, regardless of which mutations develop.

 

About the Ragon Institute

The Ragon Institute of Mass General, MIT, and Harvard was established in 2009 with a gift from the Phillip T. and Susan M. Ragon Foundation, with a collaborative scientific mission among these institutions to harness the immune system to combat and cure human diseases. Focusing on global infectious diseases, the Ragon Institute draws scientists, clinicians and engineers from diverse backgrounds and areas of expertise to study and understand the immune system with the goal of benefiting patients.  For more information, visit www.ragoninstitute.org

 

 

About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The Mass General Research Institute conducts the largest hospital-based research program in the nation, with annual research operations of more than $1 billion and comprises more than 9,500 researchers working across more than 30 institutes, centers and departments. In August 2020, Mass General was named #6 in the U.S. News & World Report list of “America’s Best Hospitals.”

More News

Press Releases

Ragon faculty sheds light on intricate functions of Resident Tissue Macrophages (RTM’s) which extend beyond immune defense

The lab of the Ragon Institute faculty member Hernandez Moura Silva, PhD, recently published a review in Science Immunology regarding resident tissue macrophages (RTMs), shedding light on their multifaceted roles in organ health. 

‘Evolution of an Epidemic’ Returns — Taking Students Across South Africa to Learn the Real-World Impact of HIV and COVID-19

After three years off due to the COVID-19 pandemic, the Ragon-MIT course HST.434 returned this January to provide 24 students a once in a lifetime learning experience

Brandon DeKosky one of five MIT faculty members awarded by Cancer Grand Challenges

Ragon core member and MIT associate professor of chemical engineering Brandon DeKosky, PhD, was one of five MIT faculty members recently awarded $25 million to take on Cancer Grand Challenges.