Favicon
Favicon

Quick Change: Fast Genetic Engineering for Vaccine Research

Date: December 10, 2020 By:

Ragon Institute scientists develop a one-step CRISPR technique to rapidly create mice capable of producing human antibodies


To develop vaccines and investigate human immune responses, scientists rely on a variety of animal models, including mice that can produce human antibodies through genetically engineered B cell receptors, which are specialized antibodies bound to the B cell membrane. These mice, however, often take several years to develop, requiring a complicated process of genetic modification and careful breeding. 


“The time it takes to generate these specialized mice has been a major factor in delaying vaccine development,” says Ragon Associate Director Facundo Batista, PhD. “With the recent advances in gene editing technology like CRISPR/Cas9, we knew there had to be a way to speed up this process significantly.”  


Batista’s group has developed a new method for generating mouse lines for pre-clinical vaccine evaluation that drastically shortens this timeline. In a study published recently in the journal EMBO, this one-step method, which uses CRISPR/CAS9 technology, can produce mice with genetically engineered human B cell receptors in just a few weeks.


To test this technology, the researchers engineered mice to have human B cell receptors that are precursors to broadly neutralizing HIV antibodies. These antibodies are known to be effective in combating HIV, but they are difficult to stimulate through vaccination. The precursors responded to an antigen currently being used in clinical HIV trials by generating broadly neutralizing antibody-like mutations. The ability to quickly evaluate the ability of different antigens to active these precursors has the potential to significantly accelerate vaccine development. 


The engineered B cells were not just capable of making high-quality antibodies; some became a specialized form of B cell known as memory B cells, which are used to maintain long-lasting immunity once antibodies are produced against a pathogen. This means the mice can likely be used to quickly validate good candidate vaccines for HIV and other pathogens. 


“This new technique may allow scientists studying vaccines and antibody evolution to tremendously speed up their research,” says Ragon Research Fellow Xuesong Wang, PhD, co-first author on the paper.


Rashmi Ray, PhD, co-first author and Ragon Research Fellow, agrees. “It will allow researchers to respond much more quickly and flexibly to new developments in the field.”

More News

Press Releases

Ragon faculty sheds light on intricate functions of Resident Tissue Macrophages (RTM’s) which extend beyond immune defense

The lab of the Ragon Institute faculty member Hernandez Moura Silva, PhD, recently published a review in Science Immunology regarding resident tissue macrophages (RTMs), shedding light on their multifaceted roles in organ health. 

‘Evolution of an Epidemic’ Returns — Taking Students Across South Africa to Learn the Real-World Impact of HIV and COVID-19

After three years off due to the COVID-19 pandemic, the Ragon-MIT course HST.434 returned this January to provide 24 students a once in a lifetime learning experience

Brandon DeKosky one of five MIT faculty members awarded by Cancer Grand Challenges

Ragon core member and MIT associate professor of chemical engineering Brandon DeKosky, PhD, was one of five MIT faculty members recently awarded $25 million to take on Cancer Grand Challenges.