Favicon
Favicon

Study Offers New Way to Discover HIV Vaccine Targets

Date: March 25, 2013 By:

“Decades of research and three large-scale clinical trials have so far failed to yield an effective HIV vaccine, in large part because the virus evolves so rapidly that it can evade vaccine-induced immune responses.

 

Researchers from the Ragon Institute of Mass General, MIT, and Harvard University have now developed a new approach to vaccine design that may allow them to cut off those evolutionary escape routes. The researchers have developed and experimentally validated a computational method that can analyze viral protein sequences to determine how well different viral strains can reproduce in the body. That knowledge gives researchers an unprecedented guide for identifying viral vulnerabilities that could be exploited to design successful vaccine targets.

 

The team, led by Arup K. Chakraborty, the Robert T. Haslam Professor of Chemical Engineering, Chemistry, Physics and Biological Engineering at MIT, has designed protein fragments (peptides) that would target these weaknesses. Ragon Institute researchers are now developing ways to deliver the peptides so they can be tested in animals. ”

 

Read more at MIT News

 

Image: This scanning electron micrograph shows HIV particles infecting a human T cell.  (Source: National Institutes of Health)

More News

Mentoring Future Scientists – A Ragon Postdoc’s Valuable Experience with the Massachusetts Science & Engineering Fair

Ragon postdoctoral fellow Matheus Oliveira De Souza volunteers his time to help the next generation of researchers

Ragon Faculty, Postdoc Present at 2024 Conference on Retroviruses and Opportunistic Infections

Boris Juelg, MD, PhD, and Toong Seng Tan, PhD, each presented papers at the event. Research from other faculty was also represented.

Ragon Institute Introduces Catherine Othieno Sempa Memorial Post Baccalaureate Scholars Program

The Catherine Othieno Sempa* Memorial Post Baccalaureate Scholars Program engages talented college graduates from HBCUs and Puerto Rican universities in a comprehensive and immersive two-year program in immunology research.